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1 Introduction
In this report, we will analyze the relationship between snow depth and thaw depth in Adventsdalen,
Svalbard. Specifically, we will:

• Build and compare interpolation layers of snow and thaw depth data
• Analyze how the data changes over time
• Construct linear regression models to predict thaw depth in 𝑁 months based on snow depth

The goal of this report is to build an understanding of different interpolation methods, and how
they can be used to analyze spatial data. The interpolation methods to be comapred are global
polynomial interpolation, inverse distance weighting, and kriging.

2 Data
The data used for this analysis is the monthly thaw and snow measurements from Svalbard over
the summer of 2007. These data were collected by the Norwegian Polar Institute and are available
in the data folder.

The data contains measurements over an 11𝑥11 grid of evenly spaced points in the Adventsdalen
valley, though not directly tied to any specific location longitude and latitude. This means the
analysis will need to be run on without an explicit coordinate system, but rather on a grid of
points.

The data is stored in a DBF file, which contains the following columns: - XM: The x-coordinate
of the measurement location - YM: The y-coordinate of the measurement location - SNOW200705:
Snow depth in May 2007 - THAW200705: Thaw depth in May 2007 - THAW200706: Thaw depth in
June 2007 - THAW200707: Thaw depth in July 2007 - THAW200708: Thaw depth in August 2007 -
THAW200709: Thaw depth in September 2007

3 Method
3.1 Interpolation
As mentioned above, we will be comparing three different interpolation methods: global poly-
nomial interpolation, inverse distance weighting, and kriging. Each interpolation method can be
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implemented in ArcGIS using the Geostatistical Wizard. When configuring the interpolation, each
method comes with unique parameters that need to be optimally set in order to achieve the best
results.

3.1.1 Global/Local Polynomial Interpolation (GPI/LPI)

Being the simplest of our interpolation models, global and local polynomials are fast and efficient
approximations, making them ideal for situations with densely populated data that needs to be
compressed or simplified. Global polynomials are more likely to focus on larger trends across the
data, while local polynomials enable more granular representations. Splines are an example of local
polynomials that are relatively robust against clustered data, as long as sampling can be considered
fair — for example, if sparse measurements occur in smoothed terrain with little variance.

Global polynomials are usually coarse representations, making them typically very underfit com-
pared to the other interpolation methods we’ve observed. Local polynomials are prone to overfitting
and can also be quite sensitive to parameter tuning, similar to IDW. In areas of complex terrain,
they may oscillate or produce artifacts that don’t reflect realistic surface features.

3.1.2 Inverse Distance Weighting (IDW)

Inverse distance weighting can be a simple and exact approach to elevation mapping, requiring only
a min/max neighborhood size and a power coefficient. Synonymous with a circus tent, with the
internal poles representing the measured input elevations, these models are often highly intuitive.
Cells of an inverse distance weighted raster are calculated from, and influenced by, their closeness
to their neighbors. This preserves the local variation captured by the measurements and is typically
considered robust, even over sparsely populated regions in an otherwise very clustered dataset.

A flaw of highly localized models is that they tend to focus only on a point’s immediate neighbor-
hood and thus fail to pick up on any global trends, making them less adaptable to complex terrain.
This can lead to heavily biased representations if sampling is not fairly distributed. Proper tuning
is important when using IDW, since the power parameter and neighborhood sizes can be very
sensitive to overfitting. To ensure generalizability, it’s good practice to tune IDW models using a
validation set, ensuring the optimal parameters also achieve reasonable errors on unseen data.

3.1.3 Kriging

Using the semivariance between points, kriging finds the optimal relation between how much neigh-
boring points in the input data should influence each other. This not only makes kriging the most
statistically optimal interpolation method, but also provides a variance surface, which represents
each cell’s corresponding certainty. Localized predictions with certainty estimations make kriging
a great method for use-cases that require fine-grained resolution with limited or sparse data.

Due to being an abstract statistic on the data, interpretability of kriging can be more cumbersome
than other simpler models. To understand the trends the model is picking up on, an analyst needs
to be able to interpret a semivariogram, which is not always directly intuitive. Kriging’s added
complexity of fitting a variogram model and solving a system of equations for each prediction makes
calculating these interpolations slower than other methods, especially when working with large data
sets. These equations assume the input data has some innate statistical predictability, which might
not always be the case — for example, with very noisy data, highly irregular sampling patterns, or
human-influenced landscapes.
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3.2 Geoanalysis
In this section, we will analyze the trends we see in the snow melt data. This analysis can be done
using the raw data from the DBF file or randomly selected points from our rasters, both producing
very similar results. The major difference between the two analyses would the amount of outliers
in the data raw data, which might introduce bias and skew the statistical analysis. Even though it
requires a few extra steps, we’ll be using sampled data from the rasters, to document this process
as well, for future reference.

For this analysis, we will leverage open-sourced Python libraries such as numpy, pandas, and
matplotlib for efficient and reproducible results.

3.2.1 Trends in thaw data

[1]: from utils import load_snow_melt_data_raw
from utils import load_snow_melt_data_sampled

snow_melt = load_snow_melt_data_sampled(file_name="sample_raster_snow_melt.csv")
columns_of_interest = [col for col in snow_melt.columns if col.

↪startswith('SNOW') or col.startswith('THAW')]

snow_melt[columns_of_interest].describe()

[1]: SNOW200705 THAW200705 THAW200706 THAW200707 THAW200708 THAW200709
count 100.000000 100.0000 100.000000 100.000000 100.000000 100.000000
mean 8.137469 34.1700 68.221242 94.388435 103.472396 104.590000
std 3.204180 9.2715 2.687098 4.755914 2.975540 6.167846
min 1.005777 1.0000 65.011284 86.177933 97.351036 92.000000
25% 6.765413 28.0000 66.244072 90.114353 101.165003 100.000000
50% 8.055214 35.5000 67.369930 93.794960 104.141502 105.000000
75% 10.690675 40.0000 69.706110 98.603336 105.640558 108.000000
max 15.080025 72.0000 76.517662 101.919251 108.231163 121.000000

Table 1: Statistical summary of raster samples’ snow melt data.

[2]: snow_melt_raw = load_snow_melt_data_raw(dir_path="GIS4_datafiles",␣
↪file_name="month_thaw_snow.dbf")

snow_melt_raw[columns_of_interest].describe()

[2]: SNOW200705 THAW200705 THAW200706 THAW200707 THAW200708 THAW200709
count 121.000000 121.000000 121.000000 121.000000 121.000000 121.000000
mean 8.099174 33.603306 69.694215 94.570248 103.545455 104.561983
std 3.880303 9.242546 7.939189 6.726597 5.599107 6.154798
min 0.000000 1.000000 55.000000 80.000000 89.000000 90.000000
25% 6.000000 28.000000 65.000000 89.000000 100.000000 100.000000
50% 8.000000 35.000000 68.000000 95.000000 104.000000 105.000000
75% 11.000000 39.000000 72.000000 100.000000 107.000000 108.000000
max 17.000000 72.000000 100.000000 110.000000 119.000000 121.000000

Table 2: Statistical summary of true samples’ snow melt data.
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It is important to double check the prediciton data against the true values. Since we’ve sampled the
rasters in the same regions that we previously have measurements, the predicted values should be
similar to the true values for each data set. Judging by the statistical summaries inte tables 1 and
2, showing prediction data and raw measure respectively, we can see that the predicted values are
very similar to the true values. This is a good sign, as it indicates that the interpolation methods
used is a good representation of these data.

[3]: from plot import boxplot_snow_melt

boxplot_snow_melt(snow_melt)

Figure 1: Box plots show the distribution of thaw data over the 5 months of measurements. The
wider the spread, the greater the variation in thaw data across the 11 × 11 grid. The yellow line
shows the median value at each month, while the blue dotted line shows the mean value. The lower
and upper limits of the box show the 25th (𝑄1) and 75th (𝑄3) percentiles of the data, respectively.
The whiskers show the range of 1.5 × 𝐼𝑄𝑅, where 𝐼𝑄𝑅 = 𝑄3 − 𝑄1. The circles dots outside the
whiskers are the outliers in the data.

[4]: from plot import plot_snow_melt_statistics

plot_snow_melt_statistics(snow_melt)
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Figure 2: A simplified display of the description data from the box plot. Here, only the mean,
variance and ranges for each month are shown. As the summer progresses, the mean thaw depth
increases, while the variance and range of the measurements decrease. The flattening of all the
curves around August and September tells us the system is becoming more stable as the summer
progresses.

3.2.2 Difference in active thaw depth versus snow depth

[5]: from plot import plot_snow_melt_regression_lines

regression_lines = plot_snow_melt_regression_lines(snow_melt)

<Figure size 1200x800 with 0 Axes>
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Figure 3: The two plots show the relationship between snow depth in May (x-axis) and thaw depth
in the respective months (y-axis). The randomly sampled datapoints are shown in the scatter plot
on top, and the 1st and 2nd order regression lines that can be used to predict the thaw depths’
at each more is shown in the bottom plot. Initial analysis shows that higher inital snow depth
typically gives lower thaw depth early on, and that thaw depths increase as the summer progresses,
stabilizing around August and September. More in the analysis section.

[6]: from utils import process_regression_data

process_regression_data(regression_lines)

[6]: THAW Column 1st Order 2nd Order
0 THAW200705 [-1.8499, 49.2232] [-0.0661, -0.8346, 46.007]
1 THAW200706 [0.2803, 65.9406] [0.0057, 0.1924, 66.219]
2 THAW200707 [0.7517, 88.2712] [0.0714, -0.3456, 91.7475]
3 THAW200708 [0.3369, 100.7308] [0.056, -0.5243, 103.459]
4 THAW200709 [0.2341, 102.685] [0.119, -1.5956, 108.4811]

Table 3: 1st & 2nd order polynimal parameters describing the regression lines plotted in Figure
X, in format 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 for a second order polynomial in the table as [a, b, c].
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4 Analysis
4.1 Interpolation

Data Method Root-mean squared
SNOW200705 Kriging 3.2978
SNOW200705 IDW 3.6789
SNOW200705 Global (1st) 3.8067
SNOW200705 Global (4th) 3.6635
THAW200705 Kriging 7.6265
THAW200705 IDW 7.9546
THAW200705 Global (4th) 8.2112
THAW200709 Kriging 5.3182
THAW200709 IDW 5.4127
THAW200709 Global (4th) 5.4672

Table 4: The root mean square (RMS) error of the different interpolation methods on snow and
thaw data.The lower the RMS, the better the interpolation method. The same parameters were
used to build each method for all three data sets.

The interpolator that minimizes RMS error is usually the best fit for the domain being analyzed*.
RMS error is a measure of how well the interpolator fits the input data, and the lower the RMS,
the better the fit. Table 4 show that across the board, kriging performed best, producing the lowest
RMS error on all three datasets.

It’s worth noting that an even better fit might be achieved through more extensive parameter
tuning. In this case, the default kriging parameters were used, with only minor adjustments.

Both IDW and global polynomial interpolation (GPI) had noticeably higher RMS errors than
kriging. This suggests the data contains both global trends and local variations that kriging is able
to account for — but that IDW and GPI are not well-equipped to capture simultaneously.

To test the flexibility of GPI, we compared both 1st and 4th order polynomial fits on the snow
dataset. We found that the 4th-order polynomial provided the best results across all datasets, so
that version was selected for the main analysis. The 1st-order fit is included as a reference for how
the model behaves under a simple linear assumption.
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Figure 4: The three plots shown for most interpolation methods when fitting in ArcGIS, including
prediction & error scatter plots w/ residual trends and a distribution comparison between predic-
tions and measurements. These plots are from the kriging interpolation layer for the THAW200709
data.

When building any interpolation method, ArcGIS provides diagnostic plots of predictions, errors,
and distribution comparisons to give users more insight into how well the model fits the data. The
residual lines and scatter plots are similar to what we looked at in the Difference in active thaw
depth versus snow depth section, with the key difference being that the points here known values,
not the sampled raster predictions.

In an ideal case, the points would lie perfectly along the prediction line, indicating a flawless model
fit. But real-world terrain is rarely that smooth or noise-free.

I found the distribution plots (shown to the right in Figure 4) to be especially informative. These
show how well the predicted values match the spread of the actual measurements. In nearly
every model I looked at, the predicted distribution (marked by a red line) had a taller, narrower
peak around the mean and covered a smaller portion of the x-axis than the measured data. This
indicates that all of our interpolation models tend to predict values closer to the mean, and struggle
to accurately estimate extreme values at either end of the range.

*A caveat to using RMS as the sole selection criterion for choosing the best interpolator is the risk
of overfitting. A model that perfectly matches a given dataset may not generalize well to new or
unseen measurements. Interpolators like IDW are especially prone to overfitting. This is often
visually apparent when the interpolation surface shows perfect circular influence zones around each
sample point.
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Figure 5: The 6 kriging interpolation layers generated for this analysis. From left to right, the
top row shows the snow depth in May, thaw depth in May, and thaw depth in June. The bottom
shows thaw depth in July, August, and September. The color scale varies for each layer, depending
on that month’s range. These can be found using the boxplot in Figure 1.

4.2 Geoanalysis
4.2.1 Analyzing trends in thaw data

Figures 1 and 2 show the trend of mean thaw depths over the summer months of 2007, along with
some other useful statistics. We see that as the summer progresses, the mean thaw depth increases,
eventually plateauing around August and September. The variance and range of thaw depths also
decrease over time, indicating that the system becomes more stable as the summer progresses.

The boxplots show that there are not many outliers in the sampled data, with the exception of the
first month, May. In the raw data, this month also showed high variation, suggesting that May is
a volatile month for thaw depth — thawing is not yet uniformly distributed across the grid.

In September, the boxplots show some values lower than those from the previous month, indicating
that some thawed ground may be starting to refreeze. This, combined with the plateauing of the
mean thaw depth, suggests that September marks the end of the thaw season and the beginning of
the next freeze cycle.

4.2.2 Analyzing the relationship between snow depth and thaw depth

Figure 3 shows the relationship between snow depth in May and thaw depth in the respective
months. As seen in Figures 1 and 2, the thaw depth increases as the summer progresses, so the
sample points and residual lines also move up along the y-axis for each consecutive month. We
can also observe the same plateauing effect around August and September in the thaw depth as we
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saw in the boxplots, with many overlapping points in this regions of those months’ corresponding
color-coded scatter plots.

The lowest thaw depth is again seen in May, but here with a clear downward trend in thaw depth as
snow depth increases. This is also observed in table 3, where the 1st order regression line parameters
shows a negative slope for May only, indicating that thaw depth decreases as snow depth increases.
This means that areas with high snow depth at the beginning of the thaw season are likely to
initially thaw less than areas with lower snow depth. This is likely due to the insulating effect of
snow, which prevents the ground from thawing as quickly.

An interesting finding from the 2nd order regression analysis was the slight increase in thaw depth
at the highest snow depths for the later months. However, given we have previously concluded that
outliers are not necessarily well represented in the data, this finding could be an artifact of the
predictions, rather than a real-world phenomenon. While this pattern also appears when building
residual lines for the raw data, We would still need to consult with a geologist to confirm or refute
this hypothesis.

5 Conclusion
In this report, we’ve looked into the relationship between snow depth and thaw depth in Advents-
dalen, Svalbard. We built and compared three different interpolation methods: global polynomial
interpolation, inverse distance weighting, and kriging. Kriging was found to be the best method
for this dataset, with the lowest RMS error across all three datasets.

We also analyzed the trends in thaw depth over the summer months, finding that the mean thaw
depth increases as the summer progresses, while the variance and range of thaw depths decrease.
This suggests that the system becomes more stable throughout the summer, with the thaw depth
plateauing around August and September. Areas with high snow depth at the beginning of the thaw
season are likely to initially thaw less than areas with lower snow depth, but this trend becomes
less pronounced over time. An interesting artifact of the data was the slight increase in thaw depth
at the highest snow depths for the later months, but this finding needs to be confirmed with a
geologist.

6 References
1. Source code for plots and utils modules: https://github.com/pmhalvor/GEO4460/lab/GIS4
2. Sample data for this task was prepared by the Luc Girod for the course GEO4460 (direct

download via UiO Canvas)
3. Extended notes documenting steps: GIS4 - Interpolation (Notion)

7 Appendix
7.1 A.1 Raw measurements residual plots
We wanted to see if the residual plots for the raw measurements also curve upwards at the highest
snow depths for the later months. The plot below confirms this for the raw measurements, as
mentioned in the analysis section.
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[7]: _ = plot_snow_melt_regression_lines(snow_melt_raw)

<Figure size 1200x800 with 0 Axes>

Figure 6: Residual plots for the raw measurements. The residuals are shown in the scatter plot,
while the regression lines are shown in the line plot.

11


	Introduction
	Data
	Method
	Interpolation
	Global/Local Polynomial Interpolation (GPI/LPI)
	Inverse Distance Weighting (IDW)
	Kriging

	Geoanalysis
	Trends in thaw data
	Difference in active thaw depth versus snow depth


	Analysis
	Interpolation
	Geoanalysis
	Analyzing trends in thaw data
	Analyzing the relationship between snow depth and thaw depth


	Conclusion
	References
	Appendix
	A.1 Raw measurements residual plots


